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NOTES PART IV: NORMAL FORM THEOREM FOR MAXIMAL EXPONENTS

The situation we will consider in this section is as follows:

We denote by O the ring of germs at 0 of holomorphic functions on C. It identifies with the ring C{x} of

convergent power series. Its completion Ô = C[[x]] consists of formal power series. We will treat both

cases in parallel. Let L =
∑n
j=0

∑∞
i=0 cijx

i∂j ∈ O[∂] be a linear differential operator with holomorphic

coefficients. Decompose it into

L = L0 + L1 + L2 + · · ·,

where Li are Euler operators of increasing shifts s0 < s1 < s2 < · · ·. Up to multiplication of L with a

monomial in x we may and will assume that L0 has shift 0, i.e., sends monomials xk to χ(k)xk, where χ

denotes the indicial polynomial of L0 (or, of L) at 0. We call L0 the initial form of L at 0. The roots ρ of χ

in C are called the local exponents of L at 0, and their multiplicities are denoted by mρ.

We say that L has a regular singularity at 0 if L0 is an operator of the same order as L. It is equivalent to

say that the coefficient cnn of L is non-zero, or that
∑
ρmρ = n, or that L =

∑n
j=0 aj(x)∂

j has quotients

ai/an which a pole of order at most n − i at 0. Fuchs’ original definition of regular singularities was that

Ly = 0 has a basis of moderate solutions at 0. We will make this precise and prove the equivalence with

the other definitions in a later section.

Examples. (1) The equation xky′ + y = 0 has a regular singularity at 0 if and only if k ≤ 1.

(2) The second order equation xky′′ + xmy′ + y = 0 has a regular singularity at 0 if and only if xm/xk =

xm−k has a pole of order ≤ 2 − 1 = 1, and 1/xk = x − k has a pole of order ≤ 2 − 0 = 2 at 0. This is

equivalent to k ≤ 2 and k ≤ m+ 1. In particular, if k = 2, then m ≥ 1.

(3) Consider now x2y′′+3x′y′+y−xy = 0. The initial form at 0 isL0 = x2∂2+3x∂+1with shift 0, while

L1 = −x, the multiplication with x, has shift +1. The indicial polynomial χ is ρ(ρ−1)+3ρ+1 = (ρ+1)2,

with root ρ = −1 of multiplicity mρ = 2. The associated Euler equation L0y = 0 has solutions y1 = x−1,

y2 = x−1 log(x). By the results of Fuchs-Thomé-Frobenius, the solutions of Ly = 0 are

y1 = x−1h0(x), y2 = x−1h1(x) + x−1 log(x)h0(x)

with holomorphic functions h0, h1 ∈ O. We will prove this in the course of the classes in a modern and

more conceptual language. Let us proceed step by step.

We start with the classical description of one specific local solution of a linear differential equation at a

regular singular point, assuming an extra assumption on the involved local exponent ρ:
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Theorem. [Fuchs, Thomé, Frobenius] Let 0 be a regular singularity of an n-th order linear differential

equation Ly = 0 with holomorphic coefficients, and let ρ ∈ C be a local exponent of L at 0. Assume

that ρ is a maximal local exponent of L modulo Z, i.e., that ρ + k is not a local exponent for any

integer k ≥ 1. Then there exists a holomorphic function h(x) in the neighborhood of 0 such that

y(x) = xρ · h(x) is a solution of Ly = 0.

We will establish this result as a corollary of the normal form theorem to be proven below. It goes as follows:

Theorem. (Normal form theorem, single maximal exponent) Let L ∈ O[∂] be an n-th order linear

differential operator with holomorphic coefficients. Let ρ ∈ C be a maximal local exponent of L at

0 modulo Z, i.e., such that ρ+ k is not a local exponent for any positive integer k. Denote by L0

the initial form of L at 0, and assume that L0 has shift 0. Set F = xρO and F̂ = xρÔ and write

also L and L̂ for the linear maps on F and F̂ induced by L. There exists a linear automorphism

û : F̂ → F̂

such that on F̂

L̂ ◦ û−1 = L̂0.

If 0 is a regular singular point of L, then u restricts to a linear automorphism

u : F → F

such that on F

L ◦ u−1 = L0.

This result justifies the wording that L0 is a normal form of L on F . From this we immediately obtain

Corollary. Let y1 = xρ be the first solution of the associated Euler equation L0y = 0. Then

u−1(y1) = u−1(xρ) is a solution of Ly = 0. 	

Remarks. (a) A suitable u is given as

u = Idxρ·C{x} − S ◦ T ,

where S = L0
−1
|H is the inverse of the restriction of L0 to a direct complement H of its kernel in F , and

where T = L0 − L is the negative of the tail of L. Its inverse v = u−1 is given as the geometric (or: von

Neumann) series v = IdF +
∑∞
k=1(S ◦ T )k, see the proof.

(b) In case that ρ has multiplicity mρ > 1, the other solutions yi = xρ log(x)i−1 of L0y = 0 can also be

lifted to solutions of Ly = 0, but this requires to introduce logarithms in the function space F . See below.

(c) The regularity of the singularity of L is used only for the convergence part, i.e., that û sends F into F .

Later on, for constructing a whole basis of solutions, it will be used again so as to have sufficiently local

exponents, namely such that their multiplicities
∑
mρ = n sum up to n.

(d) The maximality of ρ with respect to Z among the local exponents of L is crucial. If this is not assumed,

more complicated function spaces F have to be considered, both for the normal form theorem and the

description of the solutions as in the corollary.

(e) The part for formal power series works for any field of characteristic 0. The case of positive characteristic

is much more complicated and has been developed and proven recently by Florian Fürnsinn from the

University of Vienna.
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Theorem. (Normal form theorem, multiple maximal exponent) Let L ∈ O[∂] be an n-th order linear

differential operator with holomorphic coefficients. Let ρ ∈ C be a maximal local exponent of L at 0

modulo Z, i.e., such that ρ+ k is not a local exponent for any positive integer k. Denote by L0 the

initial form of L at 0, and assume that L0 has shift 0. Set F = xρO[z] and F̂ = xρÔ[z]. Denote

by ∂ the extension of ∂ to O[z] defined by ∂x = 1, ∂z = x−1, and write accordingly L ∈ O[∂] for

the induced operator. There exists a linear automorphism û : F̂ → F̂ such that on F̂

L ◦ û−1 = L0.

If 0 is a regular singular point of L, then u restricts to a linear automorphism u : F → F such that

on F

L ◦ u−1 = L0.

Again, we immediately obtain

Corollary. Let y1 = xρ, ..., ymρ
= xρ log(x)mρ−1 be the solutions of the Euler equation L0y = 0.

Then u−1(y1) = u−1(xρ), ..., u−1(ymρ
) = u−1(xρ log(x)mρ−1) are solutions of Ly = 0. 	

Remarks. (a) To get a basis of solutions of Ly = 0 one has to vary the local exponents ρ. But there might

occur two obstructions: First, some local exponents may not be maximal, and then extra caution has to be

taken; and, secondly, there the sum of the multiplicities mρ may be strictly less than n. In this case, as seen

above, the singularity is not regular. There still exists a basis of solutions in a suitable function space. It

will involve exponentials exp(P (1/xq)) of rational functions, P a polynomial, q ∈ N an integer. This is a

classical theorem of Fabry from 1885. Nicholas Merkl from the University of Vienna is currently preparing

a modern version of it along the lines of the normal form theorem.

(b) The special shape of the solutions u−1(yi) of Ly = 0 as indicated in the theorem of Fuchs-Thomé-

Frobenius above follows from the explicit description of a suitable automorphism u.

Proof. (a) We only prove here the normal form theorem in case where L acts on F = xρÔ, respectively,

F = xρO. This will already reveal the technique and the various arguments. The case of L acting on

F = xρO[z] goes along the same lines, and we will indicate the places where modifications have to be

applied.

Write L = L0−T with−T = L1+L2+ · · · the tail of L. As T has positive shift (recall that L0 is assumed

to have shift 0), we have

T (xρO) ⊂ xρ+1O.

This will be used in a moment. As L0 annihilates xρ, we also get L0(x
ρO) ⊂ xρ+1O. But now, as ρ

is maximal modulo Z among the local exponents of L, we know that L0(x
ρ+k) 6= 0 for all k ≥ 1. This

implies that L0(F) = xF . It hence contains the image of T . This is crucial for the argument to follow, and

it also holds for L and F = xρO[z], as one checks with a little patience.

Now, as L0 : F → xF is surjective, it induces a linear isomorphism when restricted to a direct complement

H of the kernel Ker(L0) of L0 in F ,

L0|H : H → xF .

Denote by S = L0
−1
|H its inverse,

S : xF → H.
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(b) At this point the proof splits into two case, the case of formal power series and the one with convergent

series. Let us do first the formal case, Ô = C[[x]], and write û : Ĥ → xF̂ for the map defined above (we

still write L, S and T without “̂ ” ).

We claim that

v̂ := IdF̂ +
∑∞
k=1(S ◦ T )k : F → F

is well defined and an inverse to û. To see this, juste recall that T , when applied to a power seres, increases

its order at least by 1. And S preserves the order, since L0 has shift 0. Actually, one may choose for S the

map (the “integration operator”) defined by

S(xρ+k) =
1

χ(ρ+ k)
· xρ+k.

So S ◦ T maps xmF into xm+1F . But as C[[x]] is complete with respect to the x-adic topology (with

neighborhoods of 0 given by the powers (x)m of the maximal ideal (x)), we can conclude that v̂ defines

indeed a map from F to F . And clearly, v̂ is then an inverse to û, all maps being linear.

It remains to prove that L0|F ◦ u = L|F , where we write subscripts to emphasize that we mean the linear

maps on F and not the abstract operators. It is also helpful to convince oneself that in the equations below

all computations are valid transformations. The proof of the equality is now easy (and nice). Namely, we

have

L0|F ◦ u = L0|F ◦ (IdF − S ◦ T )

= L0|F ◦ (IdF − S ◦ (L0 − L)|F )

= L0|F ◦ (IdF − S ◦ L0|F + S ◦ L|F )

= L0|F − L0|F ◦ S ◦ L0|F + L0|F ◦ S ◦ L|F

= L0|F ◦ S ◦ L|F

= L|F ,

using twice that S is an inverse to L0|H and hence L0|F ◦ S = IdxF . And recall that L maps F into xF ,

so all compositions are well defined. This concludes the proof of the theorem for formal power series.

It is not hard to see that the same reasoning applies to the extension F = xρO[z] and the associated linear

map L|F . We leave this as an exercise.

(c) As for the convergent case, one has to look a bit carefully what the maps T and S do on power series

with prescribed radius of convergence. Let s > 0 be a small real number and denote by Os the ring of

power series h =
∑∞
k=0 akx

k such that |h|s :=
∑∞
k=0 |ak|sk <∞. This is a Banach space, and | − |s is a

norm on it. We thus get the induced Banach space Fs and linear maps Fs → Fs can be equipped with the

operator norm (in the sense of functional analysis), denoted by || − ||s. We may choose s > 0 sufficiently

small such that L : Fs → Fs is well defined (recall that L ∈ O[∂] has finitely many convergent coefficients,

hence belongs to Os[∂] for s small).

We show that ||(S ◦ T )||s < 1. This will imply the convergence of the sum
∑∞
k=0(S ◦ T )k defining v as a

map on Fs. To this end, we show that there is a constant 0 < C < 1 such that

|S(T (xρh))|s ≤ C · |xρh|s
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for all h ∈ Os. The formulas are slightly complicated. For h =
∑∞
k=0 akx

k ∈ O we have

T (xρh) = −
∑
i−j>0

∞∑
k=0

(ρ+ k)j cijakx
ρ+k+i−j ,

and

S(T (xρh)) = −
∑
i−j>0

∞∑
k=0

(ρ+ k)j

χ(ρ+ k + i− j)
cijakx

ρ+k+i−j .

As i− j > 0 and k ≥ 0, no ρ+ k + i− j appearing in the denominator is a root of the indicial polynomial

χ. Hence the ratio

(ρ+ k)j

χ(ρ+ k + i− j)
=

(ρ+ k)j∑
`−m=0 c`m(ρ+ k + i− j)m

=
(ρ+ k)j∑n

m=0 cmm(ρ+ k + i− j)m

is well defined. But, as the singularity of L is regular, the order of L0 is n and hence cnn 6= 0. This implies

that (ρ + k + i − j)n appears in the denominator with non-zero coefficient. It is at that place where the

regularity of the singularity is used in the proof. Note that in the ratio some i could be less than j and hence

the respective ρ + k + i − j would be smaller than the ρ + k in the numerator. But the bound j ≤ n for

j nevertheless ensures that the ratio remains bounded, say ≤ c, in absolute value as k tends to∞. Taking

norms on both sides of the above equality for S(T (xρh)) yields, for s ≤ 1, the estimate

|S(T (xρh))|s ≤ c
∑
i−j>0

∞∑
k=0

|cij ||ak|sρ+k+i−j = c
∑
i−j>0

|cij |si−(j)
∞∑
k=0

|ak|sρ+k.

But by assumption the coefficients
∑∞
i=0 cijx

i of L belong to Os for all j = 0, ..., n. This implies in

particular
∑∞
i>j cijx

i ∈ Os and then, after division by xj+1 and since i ≥ j + 1, that∑∞
i>j cijx

i−(j+1) ∈ Os.

We get that ∑
i−j>0 |cij |si−(j) = s ·

∑
i−j>0 |cij |si−(j+1) ≤ c′s

for some c′ > 0 independent of s. This inequality allows us to bound |S(T (xρh))|s from above by

|S(T (xρh))|s ≤ cc′s
∞∑
k=0

|ak|sρ+k = cc′s|xρh|s.

Take now 0 < s0 sufficiently small with s0 < 1
cc′ , and get a constant 0 < C < 1 such that for 0 < s ≤ s0

one has

|S(T (xρh))|s ≤ C · |xρh|s.

This shows that ||(S ◦ T )s|| < 1 holds on Fs for 0 < s ≤ s0 as required. The convergence proof is

completed. 	

Remark. The convergence proof extends to F = xρO[z]<m (polynomials in z of degree < m) since this

is a finite free module over O. As the action of L on this extended F does not increase the degree in z, the

restriction to this module is justified.
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